
Mock Exam Answers 

Question 1 

a) Definition of a random sample 

This is a portion of the total population that has an equal probability of being chosen as the rest of 

the population. A random sample contains random variables. 

b)  Likelihood function 

𝑃𝑟(𝑌 = 𝑦) = (1 − 𝑝)𝑦−1𝑝         𝑓𝑜𝑟 0 < 𝑝 < 1   𝑎𝑛𝑑   𝑦 = 1,2,3, … 

The likehood function,  

𝐿(𝑦𝑖|𝑝) = ∏ 𝑓(𝑦, 𝑝)

𝑛

𝑖=1

= ∏(1 − 𝑝)𝑦−1𝑝

𝑛

𝑖=1

 

= 𝒑𝒏(𝟏 − 𝒑)∑ 𝒚𝒊−𝒏𝒏
𝒊=𝟏  

The log likehood function; 𝑙(𝑦𝑖|𝑝) is the log of 𝐿(𝑦𝑖|𝑝)  

= 𝒍𝒐𝒈[𝒑𝒏(𝟏 − 𝒑)∑ 𝒚𝒊−𝒏𝒏
𝒊=𝟏 ] = 𝒏𝒍𝒏𝒑 + (∑ 𝒚𝒊 − 𝒏

𝒏

𝒊=𝟏

) 𝒍𝒏(𝟏 − 𝒑) 

c) Score, Hessian and information matrix. 

Score, 𝑠(𝑦𝑖|𝑝) is the derivative of 𝑙 with respect to 𝑝 

𝜕𝑙

𝜕𝑝
=

𝑛

𝑝
−

(∑ 𝒚𝒊 − 𝒏𝒏
𝒊=𝟏 )

1 − 𝑝
 

The Hessian matrix in case is a 1 × 1 matrix whose element is the second derivative of the log 

likelihood function. 

𝜕2𝑙

𝜕𝑝2
=

𝜕

𝜕𝑝
(

𝑛

𝑝
−

(∑ 𝑦𝑖 − 𝑛𝑛
𝑖=1 )

1 − 𝑝
) =

𝑛

𝑝
−

(∑ 𝑦𝑖
𝑛
𝑖=1 )

1 − 𝑝
+

𝑛

1 − 𝑝
 

= − [
𝒏

𝒑𝟐
−

∑ 𝒚𝒊
𝒏
𝒊=𝟏

(𝟏 − 𝒑)𝟐
+

𝒏

(𝟏 − 𝒑)𝟐
] 



The information matrix 𝐼(𝑝) is the expected value of the Hessian matrix 

= − [−
𝑛

𝑝2
−

𝑛

𝑝(1 − 𝑝)2
+

𝑛

(1 − 𝑝)2
] =

−𝑛(1 − 𝑝)2 − 𝑛𝑝 + 𝑛𝑝2

𝑝2(1 − 𝑝)2
 

Thus 

= [
𝒏

𝒑𝟐(𝟏 − 𝒑)
] 

d) Proof of the 𝐸{𝑠(𝑦𝑖|𝑝) } being zero 

𝐸 [
𝑛

𝑝
−

(∑ 𝑦𝑖 − 𝑛𝑛
𝑖=1 )

1 − 𝑝
] =

𝑛

𝑝
−

𝑛

1 − 𝑝
(

1

𝑝
) +

𝑛

1 − 𝑝
 

=
𝑛 − 𝑛𝑝 − 𝑛 + 𝑛𝑝

𝑝(1 − 𝑝)
=

0

𝑝(1 − 𝑝)
= 0 

e) Finding the MLE 

We equate the score to zero and solve for p 

𝑛

𝑝
−

∑ 𝑦𝑖 − 𝑛𝑛
𝑖=1

1 − 𝑝
= 0 

𝑝 (∑ 𝑦𝑖 − 𝑛

𝑛

𝑖=1

 ) = 𝑛(1 − 𝑝) 

�̂� =
𝑛

∑ 𝑦𝑖
𝑛
𝑖=1

=
𝟏

�̅�
 

f) Deriving the C-R lower bound 

If the variance of the estimator �̂� attains the C-R lower bound then 

𝑉𝑎𝑟(�̂�) =
1

𝐼(𝑝)
=

𝒑𝟐(𝟏 − 𝒑)

𝒏
 

g) The Wald test statistic 

(�̂� − 𝑝0)2

𝑣𝑎𝑟(�̂�)
𝐻0  χ2

1 



𝑛 = 10; ∑ 𝑦𝑖

𝑛

𝑖=1

= 15;     𝑎𝑡 𝐻0 =
1

2
 

From this,  �̂� =
1

�̅�
 

�̅� =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
=

15

10
= 1.5 

 �̂� = 0.667 

𝑉𝑎𝑟(�̂�) =
𝑝2(1 − 𝑝)

𝑛
=

1
4 (

1
2)

10
= 𝟎. 𝟎𝟏𝟐𝟓 

Hence the Wald statistic is  

𝟐. 𝟐𝟑𝟏𝟏𝟐   𝑯𝟎   𝛘𝟐
𝟏  

 

 

 

 

 

 

 

 

 

 

 

 

 



QUESTION 2 

a) Checking whether GARCH model is correctly specified. 

These models are especially useful when the goal of the study is to analyze and forecast 

volatility. 

If the GARCH model effectively performs its goal analyzing and forecasting volatility, then 

it can be argued out that it is correctly specified. 

If the GARCH model satisfies both the sufficient and the necessary sufficient conditions, 

their conditional variance to be positive and the probability to be equal to 1, then the model is 

correctly specified. 

b) Leverage effect.  

This refers to an observed tendency of the volatility of an asset being negatively correlated 

with the returns of the asset. This can also be defined as the separation between the X-value 

and the mean of x-value. Leverage has a small residual since it does not always change the 

regression line. In most cases, it strengthens the correlation and the 𝑅2 value. The stochastic 

volatility model accounts for leverage. It is described as follows: 

𝛿𝑋𝑡 = (𝜇 −
𝑣𝑡

2
) 𝑑𝑡 + 𝑣𝑡

1
2𝑑𝐴𝑡 

𝛿𝑣𝑡 = 𝑘(𝛼 − 𝑣𝑡)𝑑𝑡 + 𝑌𝑣𝑡

1
2𝑑𝐵𝑡 

𝑤ℎ𝑒𝑟𝑒 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 𝑚𝑜𝑡𝑖𝑜𝑛𝑠 

𝑤𝑖𝑡ℎ 𝐸(𝑑𝐴𝑡𝑑𝐵𝑡) = 𝑑𝑝𝑡  𝑎𝑛𝑑 𝜇, 𝛼, 𝑘, 𝑌 𝑎𝑛𝑑 𝑝 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

c) 

휀𝑡 = 𝑣𝑡√ℎ𝑡;     𝑣𝑡   𝑖𝑖𝑑 𝑁(0,1) 

ℎ𝑡 = 𝜔 + 𝛼1휀𝑡−1
2 + 𝛼2휀𝑡−2

2 

Since 𝑣𝑡follows a normal distribution with 𝑁(0,1) it follows that; 



𝑣𝑡 =
√ℎ𝑡

휀𝑡
~𝑁(0,1) 

𝐿(𝑡, 𝜇, 𝛿2) =
√ℎ𝑡

휀𝑡
. (

1

2𝜋
)

ℎ
2

𝑒−
1
2

𝜀(𝑡1)2

 

d) Derive var(εt) and var(εt|εt-1, εt-2…). Which assumption(s) do you need to make 

to ensure that var(εt) exists? 

The conditional variance, is given by σt
2 = α0 + α1u

2 t-1. 

 

 

𝑢𝑡
2 = ε2 t [α0 + α1u

2 t-1] 

Et-1[u
2 t ] = σε2[α0 + α1u

2 t-1] 

= 1[α0 + α1u
2 t-1] 

= 𝜎𝑡
2 

The unconditional variance is given by,  

Et-2Et-1[u
2 t ]   =  Et-2[α0 + α1u

2 t-1] 

= α0 + α1Et-2[u
2 t-1] 

= α0 + α0α1 + α1
2u2 t-2 

Et-3Et-2Et-1[u
2 t ] = Et-3[α0 + α0α1 + α1

2u2 t-2] 

= α0 + α0α1 + α1
2Et-3[u

2 t-2] 

= α0 + α0α1 + α0α1
2 + α1

3ut-3 

(...) 

E0E1E2(...)Et-2Et-1[u
2 t ] = α0(1 + α1 + α1

2 + ... + α1
t-1) + α1

tu2
0 

=
𝜎0

1−𝛼1
 

= σ2 

The assumption for the existence of var(εt) is that the mean ut  is 

zero 

 

e) The process followed by the sequence {휀𝑡
2} is the white noise stochastic process. 



QUESTION 3 

Using the ARMA (2, 1) model: 

𝑦𝑡 =  𝑦𝑡−1 −
1

4
𝑦𝑡−2 +  

1

2
휀𝑡−1     

 

𝑤ℎ𝑒𝑟𝑒 {휀𝑡 } 𝑖𝑠 𝑡ℎ𝑒 𝑤ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 0 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝛿2 

 

a) Is the model stationary 

We write the process using lag operators: 

𝜑2(𝐿)𝑦𝑡 = 𝜗2(𝐿)휀𝑡   

      Where 𝜑2(𝐿) =  1 − 𝐿 − 0.25𝐿2 𝑎𝑛𝑑 𝜗2(𝐿) = 0.5𝐿 

Solving for the roots of quadratic equation  1 − 𝐿 − 0.25𝐿2 we get the roots to be 4.828 and -

0.828 

Since |L1| > 1 and |L2| <1, we conclude that the model is weakly stationary 

b) Is the model invertible 

The model is invertible since the co-efficient of 0.5𝐿 in 𝜗2(𝐿) is 
1

2
 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 1 

c) Definition of autocorrelation function (acf) and partial autocorrelation function (pacf) 

Autocorrelation function is defined as the measure of the correlation between observations of 

a time series which are separated by n time units ie(𝑥𝑚 − 𝑥𝑚−𝑛) 

The autocorrelation function does not control other lags 

      Partial autocorrelation function is the correlation between two variables, assuming that other 

values and set of variables are known and taken into account. 

d) Show that ρk = ρk-1 - 
1

4
ρk-2 for k > 1. 

𝜑2(𝐿)𝑦𝑡 = 𝜗2(𝐿)휀𝑡   Where 𝜑2(𝐿) =  1 − 𝐿 − 0.25𝐿2 𝑎𝑛𝑑 𝜗2(𝐿) = 0.5𝐿 



Solving for the roots of quadratic equation  1 − 𝐿 − 0.25𝐿2 we get the roots to be 4.828 

and -0.828 

Now that this model is at least weakly stationary, it implies that the condition in question 

above is true for all k>1 

e) Derive the two-step-ahead forecast. 

This is given by σt
2 = α0 + α1u

2 t-1. 

𝑢𝑡
2 = ε2 t [α0 + α1u

2 t-1] 

Et-1[u
2 t ] = σε2[α0 + α1u

2 t-1] 

= 1[α0 + α1u
2 t-1] 

= 𝜎𝑡
2 

 

 

f) Derive the two-step-ahead forecast error 

 

x1 = 𝜇 + 𝜖1             𝜖 1 ∼ N(0, 𝜎w
2 /(1 - 𝜑2)) . 

For our case, we have h1 = 1/(1 - 𝜑2) and ht = 1 for t ≥ 2. Thus, the 

unconditional sum of squares is now 

S(𝜇, 𝜑) = (1 - 𝜑 2)(x1 - 𝜇)2 +n∑t=2[(xt - 𝜇) - 𝜑 (xt-1 - 𝜇)]2 . 

 

g) Model selection criteria 

Akaike Information Criterion (AIC) 

This is an estimator of the relative quality of statistical models for a given set of data. Whenever 

a models’ collection for the data is given, AIC is then useful in estimating the quality of each 

model in relation to each of the other models. This implies that AIC provides a means for model 

selection. Suppose a statistical model of some data is given .  

We let k to be the number of estimated parameters in the model.  

We further let �̂� 𝑏𝑒 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙. 



Then it follows that  

  𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(�̂�) 

Bayesian Information Criterion  

This is a model selection criterion among a finite set of models. It is preferable to select 

models with the lowest BIC. 

It is partially based on the likelihood function. 

BIC is defined as follows 

  𝐵𝐼𝐶 = ln(𝑛) 𝑘 − 2𝑙𝑛(�̂�)   𝑤ℎ𝑒𝑟𝑒, 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎 

     n is the number of observations 

     k is the no. of parameters estimated by the model 

    �̂� 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑀 

The properties of BIC are as follows; 

It penalizes the number of parameters in a model. 

It does not depend on the prior. 

It is approximately equal to the minimum description length criterion with a negative sign 

h) Which model do you choose based on AIC? 

For easier interpretation, choose a model with higher AIC. This for our case, model, m1 is 

the best. 

i) Assume BIC/SBC selects a different model than AIC. What do you do? 

Depending on what you want to achieve, AIC is normally considered for situations when a false 

negative finding would be considered more misleading than a false positive. On the other hand, 

BIC is considered better for in situations that a false positive is as misleading as, or even more 

than a false negative. 

 



QUESTION 4 

GARCH stands for Generalized Autoregressive Conditional Heteroskedastic Model 

It is represented as GARCH (p, q) 

GARCH is obtained by expanding the residual term from white nose to an ARMA (p, q) 

It is represented as 휀𝑡 √ℎ𝑡
𝑣𝑡

   where 𝑣𝑡 is the white noise term and 

defines the conditional variance. 

In estimation of GARCH model with parameters, with k,q,p we have 

 

where vt represents the white noise term. Here,  t is normally distribution with mean zero and 

conditional variance ht, i.e 

. 

The log-likelihood function of parameter vector θ = (α0,α1,··· ,αq,β1,··· ,βp
)T is 

 

Thus the gradient will be given by ∇𝐿(𝜃) =  
1

2
∑ (

𝜖𝑡
2

ℎ𝑡
2 −  

1

ℎ𝑡
)

𝜕ℎ𝑡

𝜕𝜃

𝑛
𝑡=𝑞+1  

For the Fisher Information matrix, we have 

 



When dealing with GARCH models, it is common and convenient to work with the 

likelihood function. 

     A local quadratic approximation can be used to obtain results of optimization problems. For 

the multidimensional optimization, we seek a zero of the gradient. 

Thus, for the maximum likelihood problem 

θˆ= argmaxL(θ), θ∈Θ 

Fisher Information matrix in this case becomes. 

. 

For its algorithm, given observations , we may obtain C,aˆ1,··· ,aˆk from best fitting 

autoregressive model AR(k) and . 

 

 

   


